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Abstract 

Most resuscitated cardiac arrest patients are comatose 

and often die due to severe brain injury. With the 

uncertainty of which patient will survive or not, it is 

important for the right prognosis to be given. This would 

help decide which patient intensive care should be 

focused on. Machine learning, which is a revolutionary 

computer program that can work without explicit 

instructions, could be used to study neurological patterns, 

and make better prognosis. As part of the Predicting 

Neurological Recovery from Coma After Cardiac Arrest: 

The George B. Moody Physionet Challenge 2023, our 

team, Leicester Fox, focused on the comparison of the 

effectiveness of shallow and deep learning machine 

learning models in giving the right prognosis on chances 

of survival of cardiac arrest comatose patients. Features 

extracted from the electroencephalography (EEG) of 607 

patients are used for this analysis. Three groups of 

features (18 features) were extracted and use for training. 

The official result was a challenge score of 51% for the 

shallow model. Locally, we had an accuracy of 76% and 

65% for shallow and deep learning models respectively. 

In conclusion, when dealing with smaller number of 

patients and using features for analysis, shallow 

classifiers would usually give a better result. 

1. Introduction 

Most cardiac arrest patients who survive resuscitation 

are comatose and often die due to severe brain injury [1]. 

Physicians are often asked to give a prognosis on the 

recovery of these patients. The prognosis could be good 

or poor resulting in continued care of the patient, as poor 

prognosis usually leads to removal of life support of the 

patient, respectively. 

False positives (where poor prognosis is given but the 

patient still recovers) are not rare and poses an issue to 

the medical sector. It is paramount that false positives are 

reduced to the barest minimum so that patients who 

would truly survive would not be removed from life 

support. To eliminate the human subjectivity of 

prognosis, a method comprised of an automated system 

needs to be built. 

Years of research has presented patterns in brain 

signals which have proven useful in prognosis [5]. These 

patterns, coupled with clinical data and patient outcomes 

can be used to design a machine learning (ML) model to 

give little to no false positives with a high degree of 

accuracy. ML comes in handy in systems where humans 

have been unable to recognize substantial patterns that are 

enough to make a practical system [6]. In the design of a 

system capable of proffering a prognosis, multiple models 

need to be tested to be able to conclude on a reliable 

model.  

This work focuses on the design, modelling, and 

analysis of two ML algorithms to proffer reliable 

prognosis of the eventual recovery of comatose patients 

resulting from cardiac arrest. It was proposed by The 

George B. Moody Physionet Challenge 2023 [3] with 

data from the International Cardiac Arrest Research 

consortium (I-CARE) [2]. 

2.   Methodology 

2.1. Dataset 

I-CARE is a database of comatose patients with, at 

most, 72 hours of 18-channel electroencephalogram 

(EEG) recordings, ECG recordings, clinical data, and 

recovery status of each patient [2, 7]. The database 

includes seven hospitals from the United States and 

Europe. The database consists of 1020 adult patients, but 

this study was done on only approximately 60% (which 

was what was made available at the time of this study). 
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2.2. Shallow Classifier 

 

Three groups of features (patient information, 

complexity, and category features) were extracted from 

the dataset. 

1. A set of eight patient-related features were gathered 

for each individual, with these features encompassing 

data such as age and gender at admission, a hospital 

identification code, the context of the cardiac event 

(whether it occurred outside or within the hospital), 

the specific cardiac rhythm observed during 

resuscitation (including shockable rhythms like 

ventricular fibrillation or ventricular tachycardia, as 

well as non-shockable rhythms like asystole and 

pulseless electrical activity), and the duration between 

the cardiac arrest and the restoration of spontaneous 

circulation (ROSC). 

2. The category features and complexity features are 

described in table 1. Category features quantify the 

degree of the brain states, while the complexity 

features quantify the degree of irregularity, 

randomness and the chaotic in the EEG signals. These 

two feature classes likely to carry some prognostic 

significant to classify the EEG signals for predicting 

the cardiac arrest recovery after the coma. 

  

Table 1. Details and description of category and 

complexity features. 

Groups Features 

(parameters) 

Descriptions 

category Delta PSD (δ band 

Power) [8] 

0.5-4Hz power 

spectral range 

 
Theta PSD (Ө 

band power) [8] 

4-7Hz power 

spectral range  

 
Alpha PSD (α 

band power) [8] 

8-12Hz power 

spectral range 

 Beta PSD (β band 

power) [8] 

13-30Hz power 

spectral range 

 Median Frequency 

[9] 

The median spectral 

frequency of a signal 

complexity Hjorth parameters 

(Mobility) [10] 

Mean frequency 

 
Hjorth parameters 

(Complexity) [10] 

Variation of 

frequency 

 Shannon entropy 

[11] 

Additive measure of 

signal stochasticity 

 Higuchi fractal 

dimension [12] 

Investigate the brain 

responses for the 

important audio 

information in 

patients’ brain 

injury. 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =  √
𝑣𝑎𝑟(𝑥′(𝑡))

𝑣𝑎𝑟(𝑥(𝑡))
                                              (1) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  
𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥′(𝑡))

𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥(𝑡))
                                 (2) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑝𝑖

𝑖

log 𝑝𝑖                                              (3) 

𝑃𝑆𝐷 =  |𝑋(𝑓)|2                                                                    (4) 

where: 𝑣𝑎𝑟(𝑥(𝑡)) and 𝑥′(𝑡) are the variance and the first 

derivative for the input signal 𝑥(𝑡), respectively. 𝑝𝑖  is the 

probability that the system is in the 𝑖 𝑡ℎ state, |𝑋(𝑓)| is 

the magnitude for the frequency (𝑓). 

Patient information features were extracted from the 

information file for each patient. Category and 

complexity features were extracted from 72hrs EEG 

recording files for a signal duration for the first 5 minutes 

from each channel. The mean process was done for all 

channels in the 72 hrs recording file. TreeBagger 

classifier was used to train and test the model. Five-fold 

cross validation technique was applied to measure the 

performance of classifier. 80% of the dataset was used as 

train set and 20% as a test set. 

2.3. Deep Learning Model  

 

The deep neural network (DNN) model was trained using 

the same features as the shallow model. Typically, the 

DNN is trained using raw data with model containing 

multiple layers to optimize the performance [13]. 

However, training the model usually requires a large 

amount of data. When a large dataset is used, a deeper 

model is mainly needed for optimal results. Thus, the data 

acquisition can be demanding, and computational 

requirements increase. Furthermore, the data might 

require pre-processing concerning the perturbation 

(denoising), which can increase even more the 

computational requirements. Features can potentially add 

robustness and provide the use of a compressed deep 

learning model. We used convolutional neural network 

(CNN) combined with attention mechanism. 

     The CNN forms an automated feature in the 

training process [13]. Each layer uses filters to construct 

feature maps. And the attention mechanism makes the 

model focus more on a specific part of the data [14]. The 

model is presented in Figure 1. Hyperparameters were 

chosen for the DNN by trying various setups and 

choosing the best configuration. However, the data 

amount was considered, and therefore, the compressed 

model was used. The same preprocessing and features 
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(input) was used as with the shallow model. 

 

Figure 1. The deep learning model used for classification 

of categories good and poor. The model for CPC was 

formed by changing FC(2) to FC(1) and removing 

SoftMax layer.  

CONV(f,m) = Convolutional layer (filter size, feature 

maps)   

FC = Fully connected layer(neurons). 

3. Results 

Two proposed methods were used for predicting 

neurological recovery after cardiac arrest from coma. The 

first approach was based on using shallow classifier and 

in particular the treebagger algorithm, and another was 

dependent on deep learning model. Table 2 shows the 

scores and the accuracy for the proposed approaches. A 

higher performance can be obtained from the shallow 

classifier compared to the deep-learning model. 

 

Table 2. Result using publicly available database. 

 

Table 2 shows the results achieved by testing the 

shallow model and the CNN model on the publicly 

available dataset.  

The challenge score, as described by Physionet [7], is 

the specificity (True Positive Rate) at a False Positive 

Rate (FPR) of less than 0.05. Mathematically written as, 

𝑇𝑃𝑅 =
𝑇𝑃

𝐹𝑃 + 𝐹𝑁
 

 

𝑤ℎ𝑒𝑟𝑒 𝐹𝑃𝑅 ≤ 0.05 

The accuracy is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑤ℎ𝑒𝑟𝑒: 
𝑇𝑃𝑅 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 

𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑁 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝐹𝑁 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

 
Figure 2: Feature Importance 

4. Discussions and Limitations 

The CNN attention model is less accurate than the 

shallow model, which may be due to the small amount 

used for training. Both models have a low challenge score 

and FPR (as defined by the conditions challenge score. 

The accuracy is good, but a low challenge score means 

there would still be a noticeable chance of poor prognosis 

for the wrong patient. This would counter the main aim of 

this work. 

These results, nevertheless, are promising as they show 

that shallow models can be very useful in giving a 

prognosis for the recovery of a comatose patients. One of 

the drawbacks to these models could be that the features 

were extracted from only the first 5 minutes of the last 

recording of the patients. There could have been better 

results if a small section of each hour was used. This 

would require more computing power. 

The deep learning model result may improve if more 

data were used for training. Therefore, when using a 

small amount of data, additional data augmentation is 

preferred. For example, a synthetic data generator would 

be a suitable solution. Furthermore, the dataset was not 

balanced, which affected the training. But the feature-

based inputs for the deep learning model is an interesting 

MODEL CHALLENG

E SCORE 

5-FOLD 

CROSS 

ACCURACY 

Negati

ve Class 

Accuracy 

CNN-

attention 

0.33 (Local 

Score) 

0.65 0.70 

Shallow 

model 

0.51 

(Official 

Score) 

0.75 0.74 
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choice to consider. 

It is important to note the information obtained from 

the feature importance algorithm. Chi squared algorithm 

was used to plot the feature importance in predicting a 

recovery prognosis. It was found that ventricular 

fibrillation and age played the most important role in 

determining a good and poor prognosis. This finding 

rendered the other features used in this study close to 

inconsequential for a feature-based prediction. 

The dataset size (number of samples) was a challenge 

in our training setup. Therefore, augmented data would be 

desired. Some suitable methods exist, for example, semi-

supervised learning using labelled and unlabelled data 

and synthetic data using a data generator. However, the 

semi-supervised method would require acquiring new live 

data. Therefore, synthetic data could be a feasible 

solution. The requirement is to generate samples to 

improve the model training as efficiently as possible. 

Such a method could address the lack of labelled samples 

problem and replacement of low-quality samples. 

5. Conclusion 

This work proposed two approaches to predict 

neurological recovery after coma due to cardiac arrest. 

Shallow model and deep learning models were trained 

using the same features. The higher performance was 

obtained from shallow model officially as compared to 

deep learning model locally with challenge scores 0.51 

and 0.33 respectively; 5-fold cross validation accuracy of 

0.75 and 0.65; and negative class accuracy of 0.74 and 

0.70, respectively. The two most important features for 

the training, as seen from the chi square algorithm, are 

ventricular rate and age. 

Further work into a feature-based approach, for coma 

recovery prognosis, should recognise that ventricular rate 

and age play a vital role in the prediction while EEG 

categorical and complexity features are inconsequential. 

References 

[1] M. Rundgren, E. Westhall, T. Cronberg, I. Rosén, and H. 

Friberg, “Continuous amplitude-integrated 

electroencephalogram predicts outcome in hypothermia-

treated cardiac arrest patients,” Critical care medicine, vol. 

38, no. 9, pp. 1838-1844, 2010. 

[2] Amorim E, Zheng WL, Ghassemi MM, Aghaeeaval M, 

Kandhare P, Karukonda V, Lee JW, Herman ST, Adithya S, 

Gaspard N, Hofmeijer J, van Putten MJAM, Sameni R, 

Reyna MA, Clifford GD, Westover MB. The International 

Cardiac Arrest Research (I-CARE) Consortium Ele 

troencephalography Database. Critical Care Medicine 2023 

(in press); doi:10.1097/CCM.0000000000006074. 

 

[3] Reyna MA*, Amorim E*, Sameni S, Weigle J, Elola A, 

Bahrami Rad A, Seyedi S, Kwon H, Zheng, WL and 

Ghassemi M, van Putten MJAM, Hofmeijer J, Gaspard N, 

Sivaraju A, Herman S, Lee JW, Westover MB**, Clifford 

GD**. Predicting Neurological Recovery from Coma After 

Cardiac Arrest: The George B. Moody PhysioNet Challenge 

2023. Computing in Cardiology 2023; 50: 1-4. 

[4] J. L. Greenfield, P. R. Carney, and J. D. Geyer, Reading 

EEGs, Philadelphia: Philadelphia: Wolters Kluwer Health, 

2020. 

[5] L. J. Hirsch, S. M. LaRoche, N. Gaspard, E. Gerard, A. 

Svoronos, S. T. Herman, R. Mani, N. Jetté, Y. Minazad, J. 

F. Kerrigan, P. Vespa, S. Hantus, J. Claassen, G. B. Young, 

E. So, P. W. Kaplan, M. R. Nuwer, N. B. Fountain, and F. 

W. Drislane, “American Clinical Neurophysiology Society's 

standardized critical care EEG terminology: Interrater 

reliability and 2012 version,” Journal of the neurological 

sciences, vol. 333, pp. e15-e16, 2013. 

[6] Y. Zhang, Machine Learning, Rijeka, Croatia: 

IntechOpenInTech, 2010. 

[7] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. C. 

Ivanov, R. Mark, and H. E. Stanley, “PhysioBank, 

PhysioToolkit, and PhysioNet: Components of a new 

research resource for complex physiologic signals,” 

Circulation, vol. 101 (23), pp. e215–e220, 2000. 

[8] C. S. Nayak, and A. C. Anilkumar, "EEG Normal 

Waveforms. StatPearls," Treasure Island, FL: StatPearls 

Publishing. https://europepmc.org/article/nbk/nbk537023, 

2019. 

[9] M. Kafashan, S. Ryu, M. J. Hargis, O. Laurido-Soto, D. E. 

Roberts, A. Thontakudi, L. Eisenman, T. T. Kummer, and S. 

Ching, “EEG dynamical correlates of focal and diffuse 

causes of coma,” BMC Neurol, vol. 17, no. 1, pp. 197, Nov 

15, 2017. 

[10] S.-H. Oh, Y.-R. Lee, and H.-N. Kim, “A Novel EEG 

Feature Extraction Method Using Hjorth Parameter,” 

International Journal of Electronics and Electrical 

Engineering, pp. 106-110, 2014. 

[11] C. E. Shannon, and W. Weaver, "Shannon. The 

Mathematical Theory of Communication," University of 

Illinois Press, pp. 1-10, 1998. 

[12] A. Accardo, M. Affinito, M. Carrozzi, and F. Bouquet, 

“Use of the fractal dimension for the analysis of 

electroencephalographic time series,” Biological 

cybernetics, vol. 77, no. 5, pp. 339-350, 1997. 

[13] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” 

Nature (London), vol. 521, no. 7553, pp. 436-444, 2015. 

[14] Z. Niu, G. Zhong, and H. Yu, “A review on the attention 

mechanism of deep learning,” Neurocomputing 

(Amsterdam), vol. 452, pp. 48-62, 2021. 

 

Address for correspondence: 

 

Dr Xin Li.  

School of Engineering 

University of Leicester, UK 

xin.li@leicester.ac.uk 

Page 4


